

2018 Long-Term Stewardship Conference

Standing Up the U.S. Department of Energy's Defense-Related Uranium Mines Program

Deborah Steckley, PMP U.S. Department of Energy (DOE) Office of Legacy Management (LM) John Elmer, P.E.

Navarro Research and Engineering, Inc. (Contractor to DOE-LM)

8.1 LM Uranium Mine Programs

Presentation Overview

- History of the U.S. Department of Energy's (DOE's) Defense-Related Uranium Mines (DRUM) Program: Report to Congress
- Establishment of the DRUM Program
- Program Accomplishments-to-Date
- Standing up the DRUM Program
 - Collection of Historical Data
 - DRUM Program Documents
 - Establishing Risk Standards
 - Developing the DRUM Database
 - Challenges of Ramping Up
- Lessons Learned

Geologist locating an adit at a small mine on federal public land in the Yellow Cat District, Utah

History of the DOE DRUM Program:

Report to Congress

- DOE prepared an August 2014 Report for Congress on 4,225 DRUM (mines) that produced uranium ore for defense-related purposes of the United States
 - Most of the mines are abandoned.
- The Report is based on U.S. Atomic Energy Commission (AEC) records, and required consultation with other federal agencies, affected states and tribes, and the interested public.

- Numerous data gaps were identified regarding the condition of the mines.
- The majority of mines were found to be on U.S. Bureau of Land Management (BLM) and U.S.D.A. Forest Service administered land.
- Mines present physical hazards that are the greatest, most immediate dangers.
 - Chronic exposure to radiological and chemical constituents from legacy mine waste is also of concern.

Establishment of the DRUM Program

- DOE's Office of Legacy Management (LM) initiated the DRUM Program in fall 2016, building on Report to Congress findings.
- The Program's goal is to verify and validate (V&V) the condition of 2,500 mines on federal public land by 2022.

• V&V will result in identifying whether the mines pose physical hazards as well as potential radiological and chemical risks, and to what extent.

- LM will also assess:
 - the federal government's potential environmental liability;
 - costs to address high-risk physical hazards; and
 - the Program's return on investment to the American taxpayer.

Merry Widow Mine, Eagle Basin, Colorado

Establishment of the DRUM Program: State and Federal Partnerships

- LM formed partnerships and executed agreements with BLM and Forest Service to inventory and sample mines.
 - Approximately 2500 mines are on federal public land and pose risks to recreationalists.
- LM also formed partnerships and executed agreements with state abandoned mine land programs.
- Partnerships are advantageous because they leverage resources and expertise.
 - BLM and Forest Service facilitate site access and advise on land issues.
 - States have years of mine inventory expertise to contribute; some states also have authority to access state and private land for inventory activities.
 - LM contributes its radiological expertise.

Program Accomplishments To Date

As of July 22, 2018:

- V&V activities for 904 mines in Colorado, New Mexico, and Utah are complete.
- Risk scoring assessments are complete for 113 mines and provide rankings of physical hazards, and potential chemical and radiological risks.
 - The majority of mines present physical hazards (e.g., open adits).
 - Few mines rank medium or high for chemical and radiological risks.
- The federal government has reduced its potential environmental liability by approximately \$150 million through preliminary risk screening efforts.
 - Screening results generally don't exceed established chemical and radiological risk screening levels.

Standing Up the DRUM Program:

Collection of Historical Data

- AEC sources include allocation and certification bonus case maps and files from the National Archives and Records Administration.
 - Over 3,700 maps were scanned for the DRUM Program.
- Other historical data sources
 - W. Chenoweth
 - Well-known uranium geologist whose collection includes reports and first-hand knowledge of mines in Arizona and New Mexico
 - S. Hollingsworth
 - Former lead geologist for Umetco; numerous maps of claims
 - Museums of Western Colorado (AEC data)
 - National Uranium Resource Evaluation
 - Defense Minerals Exploration Administration
 - USGS Bulletins, geologic maps, and professional papers

AEC Map

Standing up the DRUM Program: DRUM Program Documents

DOE developed five Program Documents to guide V&V efforts.

• The **Program Management Plan** describes how DOE LM and its contractor will execute the program.

V&V Work Plan Checklist

- The V&V Work Plan provides structure and procedures for V&V activities reconciliation efforts that include:
 - reconciliation to determine mine location;
 - field inventory of mine features;
 - gamma surveys;
 - environmental sampling; and
 - risk scoring assessments to determine physical hazards, and potential chemical and radiological risks posed by a mine.

Standing up the DRUM Program: DRUM Program Documents (continued)

- The **Health and Safety Plan Analysis** identifies hazards and procedures for site workers performing field activities.
- The **Quality Assurance Program Plan** presents steps to ensure that data collected are of correct type and quality.

 Reinforces management's commitment to perform and deliver high quality services.

- The **Data Management**Plan describes data
 generation and use,
 management of the DRUM
 Database.
 - Data generated from field activities; quality assurance involved at each step.

Mine waste pile at Markey Mine, Red Canyon, Utah

Standing up the DRUM Program: Establishing Risk Standards

- DOE and BLM agreed to a twoweek exposure over a 26-year timeframe risk scenario for radiological and chemical screening levels.
 - Screening levels only apply to mines on federal public land.
- Gamma radiation screening levels were developed by DOE and are set for screening based on different exposure standards (none, low, medium, high); chemical screening levels developed by BLM.

Hard Rock Mine: Gamma Survey

Standing up the DRUM Program: Developing the DRUM Database

- Report to Congress database was developed from an Microsoft Excel spreadsheet; included fields such as ownership, production level, and status.
- DOE determined an upgraded database for the Program was needed to document V&V results.
- Requirements included:
 - a "permanent" IT platform so data can be archived after the Program concludes;
 - canned and ad-hoc data query and reporting capabilities;
 - the ability to eliminate multiple spreadsheets used for storing data; and
 - an ArcGIS platform for storing data collected by GPS-enabled devices.
- First database upgrade included improvements to the existing interface, database, and reporting functionality.
- Second database upgrade will add additional data fields and reporting, making it a useful tool for all project personnel.

Standing up the DRUM Program: Challenges of Ramping Up

- DOE staff grew from 1 to 4 FTE in 1 year.
- Contractor staff grew from 4 to 42 FTEs in 3 years.
- Contractor was required to hire 32 new contractor positions to accommodate work load. Personnel included:
 - radiological control technicians;
 - ecologists;
 - geologists;
 - technical report writers;
 - document management;
 - abandoned mine experts; and
 - other support staff.

Lessons Learned: General

- Reporting without upgraded DRUM Database
 - Tracking data by spreadsheet led to errors
- Quality versus production
 - Program rolled out rapidly; three field crews hired in one year
 - Primary attention placed on production and safety
 - Less focus on training and quality assurance led to nonconformity with some work plan requirements
- Corrective Actions
 - Collected additional information at select sites that were sampled during the 2017 field season
 - Conducted extensive training on field techniques during the beginning of the 2018 field season
 - Increased management and quality assurance assessments to ensure quality and consistency will be achieved moving forward

Lessons Learned:

General (continued)

- Constantly monitor lessons learned from other sites and programs
 - Bulletin made LM sites aware of suspect counterfeit bolts
 - Safety inspection of trailers and tie-downs used to hold all-terrain vehicles discovered eight suspect bolts holding tie-downs
 - Information was disseminated regarding a recall on lithium batteries used in tough pads
 - Pulled four tough pads out of service and replaced batteries
- Conducted additional training of field personnel
 - Provided advanced wilderness first aid training
 - Provided mine safety training along with tour of underground mine teaching facility (Edgar Mine operated by Colorado School of Mines)

Lessons Learned:

Instrumentation

- First gamma unit did not have ability to observe data at the mine
 - New units purchased, allowing transects to be observed in the field
 - Units also allow for download of data onto an aerial image to ensure

coverage was achieved

- Initially utilized X-ray fluorescence meter to measure waste rock samples, with goal of reducing number of analytical samples
 - Too difficult to set up a correlation for wide range of metals
 - Useful as a screening tool or to target one or two metals

XRF testing a piece of ore

Lessons Learned:

Instrumentation (continued)

- Radon daughter measurements
 - Measured radon levels at site and near mine openings
 - Many factors influenced readings
 - Opening venting in or out
 - o "Fresh radon" doesn't result in exposure levels reported
 - Generally field teams don't work near openings where highest levels occur; additionally, field teams don't enter mines
- Hazardous gas measurements
 - Four-gas meter used to look for low levels of oxygen, carbon monoxide, and hydrogen sulfide
 - Don't go underground or into confined spaces; no need for monitoring
- High-volume air sampler (required portable generator) measurements for long-lived radionuclides
 - Collected enough data early on and determined not needed

Questions?

DRUM Site Tour, DOE, Navarro, and DRUM Program Partners Southwest Colorado